邮箱:JJFang@ahnu.edu.cn
地址:必赢线路检测3003花津校区必赢线路检测3003320
教育与工作背景
Ø 2022/06 至今 必赢线路检测3003必赢线路检测3003 讲师 硕士生导师
Ø 2021/01–2022/01 新加坡国立大学 化学与生物分子工程 联培博士
Ø 2017/09–2021/12 南京工业大学 材料科学与工程 博士
研究方向
Ø 单原子催化、半导体光催化
科研项目
Ø 安徽省高校重点青年科研项目,主持,在研
Ø 必赢线路检测3003博士科研启动基金,主持,在研
Ø 江苏省研究生科研与实践创新计划项目,主持,已结题
Ø 国家自然科学基金青年科学基金项目,参与,已结题
Ø 江苏省自然科学青年基金项目,参与,已结题
科研论文
8. The synthesis of single-atom catalysts for heterogeneous catalysis. Chemical Communications, 2023, DOI: 10.1039/d2cc06406e.
7. Low-energy photons dual harvest for photocatalytic hydrogen evolution: bimodal surface plasma resonance related synergism of upconversion and pyroelectricity. Small, 2023, 202207467.
6. Double local electromagnetic fields collaboratively enhanced triplet–triplet annihilation upconversion for efficient photocatalysis. Catalysis Science & Technology, 2023, 13, 2151–2159.
5. Construction of infrared‐light‐responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Advanced Materials, 2020, 32(12), 1906361.
4. Enhanced triplet-triplet annihilation upconversion by photonic crystals and Au plasma resonance for efficient photocatalysis. Catalysis Science & Technology, 2020, 10, 8325–8331.
3. Efficient photocatalysis of composite films based on plasmon-enhanced triplet-triplet annihilation plasmon-enhanced triplet–triplet annihilation. ACS Applied Materials & Interfaces, 2019, 12, 717-726.
2. Highly efficient photocatalytic hydrogen generation of g-C3N4-CdS sheets based on plasmon-enhanced triplet–triplet annihilation upconversion. Applied Catalysis B: Environmental, 2019, 258, 117762.
1. CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Applied Catalysis B: Environmental, 2017, 217, 100-107.